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ABSTRACT

Described herein is the parametric and structural uncertainty quantification for the monthly Extended

Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). A Monte Carlo ensemble approach was

adopted to characterize parametric uncertainty, because initial experiments indicate the existence of significant

nonlinear interactions. Globally, the resulting ensemble exhibits a wider uncertainty range before 1900, as well

as an uncertainty maximum around World War II. Changes at smaller spatial scales in many regions, or for

important features such as Niño-3.4 variability, are found to be dominated by particular parameter choices.
Substantial differences in parametric uncertainty estimates are found between ERSST.v4 and the

independently derived Hadley Centre SST version 3 (HadSST3) product. The largest uncertainties are over

the mid and high latitudes in ERSST.v4 but in the tropics in HadSST3. Overall, in comparison with HadSST3,

ERSST.v4 has larger parametric uncertainties at smaller spatial and shorter time scales and smaller para-

metric uncertainties at longer time scales, which likely reflects the different sources of uncertainty quantified

in the respective parametric analyses. ERSST.v4 exhibits a stronger globally averaged warming trend than

HadSST3 during the period of 1910–2012, but with a smaller parametric uncertainty. These global-mean trend

estimates and their uncertainties marginally overlap.

Several additional SST datasets are used to infer the structural uncertainty inherent in SST estimates. For the

global mean, the structural uncertainty, estimated as the spread between available SST products, is more often

than not larger than the parametric uncertainty in ERSST.v4. Neither parametric nor structural uncertainties

call into question that on the global-mean level and centennial time scale, SSTs have warmed notably.

1. Introduction

Sea surface temperature (SST) is a fundamental variable

in climate studies and climate monitoring (e.g., Hartmann

et al. 2013; Blunden and Arndt 2013). Consequently,

a succession of historical observed SST analyses have been

produced by different groups, including Smith et al. (1996,

2008), Smith and Reynolds (2003, 2004), Kaplan et al.

(1998), Rayner et al. (2003, 2006), Kennedy et al.

(2011a,b), Ishii et al. (2005), and Hirahara et al. (2014).

Now an updated version of the monthly Extended Re-

constructed Sea Surface Temperature (ERSST), version

4 (ERSST.v4), is available, as presented in a companion

paper (Huang et al. 2015, hereinafter Part I). This is

a global monthly dataset on a spatial 28 3 28 grid, cov-
ering January 1875 onward.

In ERSST.v4, significant improvements were achieved

relative to the previous ERSST versions (Smith and

Reynolds 2003, 2004; Smith et al. 2008) by tuning against

Corresponding author address: W. Liu, Scripps Institution of

Oceanography, CASPO, UCSD, 9500 Gilman Drive, La Jolla, CA

92093.

E-mail: wel109@ucsd.edu

1 FEBRUARY 2015 L IU ET AL . 931

DOI: 10.1175/JCLI-D-14-00007.1

� 2015 American Meteorological Society

mailto:wel109@ucsd.edu


several plausible options in the selection of several

parameters to alight on the final operational algorithm

configuration. The parametric uncertainty outlined here

is assessed from varying those parameters of the ERSST

algorithm modified in Part I and serves to complement

the operational version and increase its utility to end

users. As noted in Kennedy (2014), there exist many

remaining uncertainties and gaps in our SST knowledge,

which it is important that, as a global community, we

critically assess. The central theme of this paper is to

analyze the parametric uncertainty in ERSST.v4 and

outline some of its potential applications. Comparisons

are made to an equivalent product called the Met Office

(UKMO) Hadley Centre SST version 3 dataset

(HadSST3; described in section 4), particularly the

ensemble that captures its parametric uncertainty in

a number of distinct parameters. Finally, we also compare

to other long-term SST products to inform an estimate of

the current structural uncertainty in SST records.

The remainder of this paper is organized as follows.

First, in section 2, we briefly summarize those aspects of

the v4 algorithm that are important for this discussion of

the parametric uncertainty in the product (see Part I for

a full description). In section 3, we examine the sensitivity

of individual parameters and then test the nonlinear ef-

fect in the combination of multiple parameters. Owing to

a demonstrated strong nonlinearity between parameters,

we then carry out an ensemble analysis to quantify the

parametric uncertainty in ERSST.v4. Subsequently, we

make a comparison of parametric uncertainties between

ERSST.v4 and the HadSST3 in section 4. Section 5 an-

alyzes structural uncertainty in SST estimates and how

this compares to the parametric uncertainties derived

in section 3. A discussion is provided in section 6, and

section 7 concludes.

2. ERSST.v4 algorithm and parameters

A complete methodological description and justifica-

tion for the parameter choices made in the operational

version of ERSST.v4, alongwith a comparison to several

other datasets, are given in Part I. In this section, we

briefly highlight those parameter choices described in

Part I, except for the SST and ice data, and we also out-

line the alternatives that were considered during its de-

velopment. These include the ERSST.v3b choices and

also, in some cases, additional plausible parameter

choices. These alternative choices form the basis for the

parametric uncertainty estimation derived and analyzed

herein. The choices are also tabulated in Table 1, which

provides a breakdown for the frequency that each choice

is assigned in the ensemble. The following description is

in the chronological order in which the operational al-

gorithm undertakes the analysis. Whether these sequen-

tial processing choices interact is addressed in section 3a.

The input data used in ERSST.v4 are selected from

release 2.5 (R2.5) of the International Comprehensive

Ocean–Atmosphere Data Set (ICOADS; Woodruff

et al. 2011) through 2007, and then from 2008 forward

fromGlobal Telecommunication System (GTS) receipts

gathered by the NOAA’s National Centers for Envi-

ronmental Prediction (NCEP).We useR2.5 to construct

the parametric uncertainty estimates herein because of

demonstrably improved data completeness, enhanced

TABLE 1. Parameter settings in ERSST.v4 operational and ensemble runs. A total of 9 of the changed parameters included in ERSST.v4

(Part I) have been varied, and for each parameter, 2–4 options are possible (operational product settings and 1–3 alternates). These 9

parameters can be categorized into two groups: observation-related and system-dependent parameters. Parameters 1 and 3 belong to the

former, while the others belong to the latter. The operational run in ERSST.v4 is conducted by using the first selection of each of the

parameters shown in the table. Meanwhile, 100-ensemble runs are carried out via a Monte Carlo ensemble approach in which a random

sampling is repeated until achieving 100 unique sets of parameter combinations, based on a probability weighting on each parameter

option, in the form of percentage (given in parentheses—in each case, the ensemble will, on average, sample the ERSST.v4 setting more

than the alternates). Note, here bias adjustments prior to 1886 are set as the annual cycle in 1886, since the NMAT data in HadNMAT2

and UKMO NMAT are not deemed reliable before 1886 by the dataset creators (Kent et al. 2013).

Parameter ERSST.v4 operational Option 1 Option 2 Option 3

1 SST STD for QC From OISST.v2 1982–2011 (70%) From COADS 1950–79 (30%) — —

2 SSTA calculation in QC On an in situ basis (70%) On a gridbox basis (30%) — —

3 NMAT for bias correction* HadNMAT2 (70%) UKMO NMAT (30%) — —

4 Bias correction smoothing f 5 0.10 (40%) f 5 0.05 (20%) f 5 0.20 (20%) Linear as

v3b (20%)

5 Ship–buoy adjustment 0.12 (50%) 0.10 (25%) 0.14 (25%) —

6 LF anomaly filling Nearby anomaly filling (70%) Zero-anomaly filling (30%) — —

7 EOT training period 1982–2011 (50%) 1982–2005 (25%) 1988–2011

(25%)

—

8 EOT weighting W 5 N/(N 1 j2) cosu (70%) W 5 cosu (30%) — —

9 EOT critical value 0.10 (50%) 0.08 (25%) 0.12 (25%) —

*Adjustment is linear before 1886 using 1886 adjustment.
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duplicate removal, and other procedures over the pre-

vious R2.4 release, which formed the basis for ERSST.

v3b. It was felt that use of R2.4 did not constitute a rea-

sonable parametric choice, partly because as input data it

is external to the algorithm itself, and partly becauseR2.5

was demonstrably better and hence that this should not

inform the parametric uncertainty estimation herein.

Next, based on amonthly SST climatology on a spatial

28 3 28 grid for 1971–2000 (Xue et al. 2003; note here this

reference climatology is prior defined, which may be

different from the 1971–2000 SST climatology of the

final reconstructed data), individual observations are

screened via a quality control (QC) procedure (Smith

and Reynolds 2003, 2004). In QC, the SST anomaly

(SSTA) is calculated on an in situ basis (before compu-

tation of the gridbox average; parameter 2 in Table 1) and

extreme values [greater than 4 times the standard de-

viation (STD)] are excluded based on the monthly STD

of Optimum Interpolation SST, version 2 (OISST.v2;

Reynolds et al. 2002) for the 1982–2011 base period

(parameter 1 in Table 1). For ERSST.v3b these same

operations were achieved through consideration on

a gridbox basis with comparison to STD estimates from

Comprehensive Ocean–Atmosphere Data Set (COADS)

records from 1950 to 1979. The two STD climatologies are

included as possible parameter choices herein.

FollowingQC, the algorithm applies bias adjustments.

First, ship SST measurements are adjusted through refer-

ence to themost recent nighttimemarine air temperatures

(NMAT) from the Hadley Centre (HadNMAT2; Kent

et al. 2013; parameter 3 in Table 1; note that HadNMAT2

also uses ICOADSR2.5 for construction) using amodified

scheme from that of Smith and Reynolds (2002). In

particular, a locally weighted scatterplot smoothing

(LOWESS) filter (Cleveland 1981) with a smoothing

parameter f 5 0.1 is applied to eliminate variations on

time scales shorter than decades in the calculation of

annual coefficients (parameter 4 in Table 1). ERSST.

v3b used COADS NMAT (an earlier dataset with less

fully developed corrections and QC checks on NMAT)

and applied a simple smoothing scheme to bias

corrections (linear regression on annual coefficients

pre-1942 and a zero annual coefficient post-1942). This

created a correction with a sharp step (see Fig. 6 in

Part I). In ERSST.v4 development, another recent

NMAT dataset (UKMONMAT; Parker et al. 1995) and

alternative LOWESS filter values (0.05 and 0.2) were

tested. Here both UKMO and HadNMAT2 NMAT

datasets and four smoothing options (three LOWESS

filter values and linear plus step) are considered for the

error estimation.

Next, ship–buoy bias adjustment was undertaken by

adding 0.128C to all drifting and moored buoy SSTs

(parameter 5 in Table 1). This value was realized

through considering all nearby pairs of data points of

ship and buoy measurements. No similar correction was

undertaken for ERSST.v3b, but the spread of pairwise

estimates enables us to explore uncertainty to this

choice. Here we use the best estimate 60.5 STD

(0.028C) as alternative values. We note that this is

somewhat smaller than the range of published estimates

of the effect, which have undertaken a range of

approaches to determining its value and have tended to

range between 0.128 and 0.188Cwith varying uncertainty

estimates (see discussion in Part I). We prefer to base

our parametric uncertainty estimates upon the analysis

that informed ERSST.v4 development for consistency.

Then the merged ship and buoy SSTAs are analyzed

separately for the low- (.15 yr) and high-frequency

(,15 yr) components. The low-frequency (LF) compo-

nent is constructed by averaging and filtering data over

a spatial–temporal region (Smith et al. 2008). In areas or

periods with sparse data, the LF anomaly is set to

a nearby value (parameter 6 in Table 1). In ERSST.v3b,

this infilling was instead a zero-anomaly (climatological

average) infilling that implicitly assumed no underlying

change and would tend to damp anomalies away from

the climatology period were there a transient change in

the system. To determine sensitivity to this assumption,

both parameter options are considered here.

The high-frequency (HF) analysis uses a set of

anomaly-increment modes, or spatial patterns, computed

using empirical orthogonal teleconnections (EOTs;

Van den Dool et al. 2000). Based on a training period of

1982–2011 (parameter 7 in Table 1), a maximum of 130

EOTs were used (Smith and Reynolds 2003), with

screening to eliminate any modes not adequately sam-

pled (,10% of the variance of the mode). In data-rich

periods, over 120 EOTs are generally selected in ERSST.

v4. In data-sparse periods, this drops to as low as 100 and,

prior to 1875, even lower still. For the selected modes,

a weight for eachmode is found by fitting the set ofmodes

to the superobservations (defined as the average of all

input data over a given grid box for a given month) and

including an additional EOT weighting (Reynolds et al.

2002) such thatW5N/(N1 j2) cosu, whereN is the sum

of the record numbers of ship (Ns) and buoy (Nb) in

superobservations, j is average error value in observa-

tions, and u denotes latitude (parameter 8 in Table 1).

The HF component is computed from the weighted sum

of the returned EOT modes.

All three of these EOT steps had multiple choices

considered in the development of ERSST.v4, and these

choices are explored in the uncertainty estimates here. In

addition to 1982–2011, EOT training periods of 1982–2005

(as inERSST.v3b) and 1988–2011 (same number of years
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as in v3b, but for a more recent period) are considered.

The EOT weighting in ERSST.v3b was solely based

upon the cosu area weighting, and that is considered

here as a plausible alternative. Finally, the screening

criteria (Crit) were varied around the designated oper-

ational value of 0.1 (parameter 9 in Table 1). The lower

Crit values than in ERSST.v3b (0.2) are set such as to

retain plausibly realistic El Niño/La Niña features in
early Niño-3.4 time series (see discussion in Part I). Part I
considered alternatives of 0.05 and 0.2 for this parame-

ter, whereas here the alternatives explored are more

restricted, being 0.08 and 0.12 (Table 1). As documented

by Part I, a value of Crit of 0.05 yields unacceptably high

noise levels, and 0.2 unacceptably diminishes variability

in key regions, such as Niño 3.4. It is therefore felt that
neither is an entirely reasonable choice in creating
a parametric uncertainty estimate that should span plau-
sible solutions (section 3).

Finally, the reconstructed SSTA by LF and HF com-

ponents are merged with sea ice information from the

UKMO Hadley Centre Sea Ice and Sea Surface Tem-

perature dataset (HadISST) (1870–2010; Rayner et al.

2003) and NCEP (2011–12; Grumbine 1996). Note, here

sea ice extents and concentrations are uncertain, par-

ticularly prior to the satellite period. A prior-defined

1971–2000 SST climatology is used to generate the

ERSST.v4 product. None of these steps included rea-

sonable alternatives, so these steps do not contribute to

the parametric uncertainty estimates herein.

3. The ERSST.v4 parametric uncertainty
estimation

Before delving into the details of the parametric un-

certainty estimation, some generic discussion is war-

ranted surrounding more theoretical aspects of such

uncertainty estimation and the likely implications for

our estimates. First and foremost, such estimates are an

emerging field and to date several distinct approaches

have arisen (e.g., Kennedy et al. 2011b; Morice et al.

2012; Thorne et al. 2011a; Mears et al. 2011; Williams

et al. 2012). These reflect both the importance of such

estimates, which allow users to assess the sensitivity of

their analyses to observational uncertainties in a more

informedmanner, and also the real challenges inmaking

such estimates.

Central to the challenges is ensuring that the resulting

ensemble is neither overly optimistic nor overly pessi-

mistic and contains the true measured values. In the

absence of a robust way to determine this, there exist

a myriad of defensible approaches to determining what

the plausible ensemble should consist of. In essence,

this comes down to determination of four central facets:

(i) which parameters to vary; (ii) which ranges to allow

the parameters to vary within; (iii) whether the param-

eters are varied in combination; and (iv) whether to

provide a priori weights on different parameter value

choices to preferentially choose certain values over others.

While we cannot claim to know the correct way to do

this, our approach in creating the parametric uncertainty

estimates for ERSST.v4, outlined in the remainder of this

section, has been as follows. We begin by assessing the

effects of single parameter perturbations (section 3a).

Next, we have tested whether it is necessary to account

for nonlinearities through single- and paired-parameter

perturbation experiments (section 3b). Having deter-

mined the necessity to consider such nonlinearities, we

then create a 100-member ensemble using aMonte Carlo

procedure (section 3c).

Returning to the four essential choices in creating

such an ensemble alluded to previously: (i) we vary

solely those parameters changed in ERSST.v4 and out-

lined in section 2; (ii) we take the particular fixed values

assigned in Table 1 and justified in section 2 of Part I;

(iii) we vary them in combination; and (iv) we provide

preferential weight to the operational version config-

uration of each parameter such that, on average, the

operational choice for each parameter is visited more

often in the ensemble than any possible alternate is.

Implicit in this approach are the following assumptions:

that all important parameters were considered in

moving from v3b to v4; that the alighted-on v4 settings

were more optimal in reality than the possible alter-

nates; and that our alternatives span the full range of

plausible choices. If such assumptions are incorrect,

then the estimates will be overestimates or (more

likely) underestimates.

a. Single-parameter perturbations

To explore the sensitivity of each parameter option,

we conducted 14 single-parameter perturbation (SPP)

runs (cf., Fig. 1 legend). In each SPP run, only one pa-

rameter choice is perturbed, while the other parameters

remain the same as in the ERSST.v4 operational run.

The SST difference between individual SPP runs and the

ERSST.v4 operational run shows the sensitivity of the

analysis to a particular parameter, or more specifically,

a particular parameter option. Because several param-

eters have two or more alternates (Table 1), the number

of SPP runs is slightly greater than the number of pa-

rameters varied.

Figure 1a displays the differences in global and broad

latitudinal band annual-mean SSTs between all 14 SPPs

and the operational ERSST.v4. In the low frequency, the

uncertainty in global scale is most affected by changes in

those parameters that relate to bias adjustments and bias

934 JOURNAL OF CL IMATE VOLUME 28



adjustment smoothing choices. Prior to 1886, parameter

effects are greatest when using UKMO NMAT bias

adjustments instead of HadNMAT2. For the high fre-

quency, the global SST series behavior is highly sensi-

tive to EOT training period and EOT critical value in

the early period when data are sparse. Changes in the

ship–buoy adjustment and EOT weighting have little

influence on global SST.

For the various latitudinal belts (Fig. 1, remaining

panels), SST sensitivity can be quite different to global-

mean sensitivity. In the low frequency: (i) a change

of SST STD for QC has a significant effect on SSTs in

FIG. 1. Differences of averaged annual-mean SST between individual SPP runs and the ERSST.v4 operational run

for (a) globe, (b) 608–908N, (c) 308–608N, (d) 308S–308N, (e) 608S–308N, and (f) 908–608S. In each plot, results from

different SPP runs are denoted by distinct colors and line styles, as denoted in the in-line key.

1 FEBRUARY 2015 L IU ET AL . 935



308–608N prior to 1942, whereas a change of the SSTA

calculation for QC has effects mostly in 308–608N and

908–608S; (ii) A change to bias adjustment smoothing

with a linear scheme, as in ERSST.v3b, produces a nega-

tive SST departure between 1910 and 1930 and a positive

spike at 1942 within 608S–608N; and (iii) the LF anomaly

filling becomes dominant in the polar regions and is the

dominant parameter choice in the region 908–608S through
the whole period and in 608–908N after 2000. In the high

frequency, SST is more sensitive to the EOT training

period than to the EOT critical value over 908–308S.
Additionally, we examine the parameter sensitivity over

four regions of particular interest (Fig. 2): the Niño-3.4
area (68S–68N, 1208–1708W), the area south of Greenland

(408–608N, 248–568W), the Atlantic main development

region for hurricanes (AMDR; 108–208N, 308–608W)

and the Kuroshio region south of Japan (248–348N,

1308–1468E). In theNiño-3.4 area, SST is sensitive to EOT

training periods and EOT critical values. Alterations to
these two parameters will substantially modulate the
Niño-3.4 SST on the interseasonal scale and then influence
the recording of ENSO events when sampling is sparse
(see also the discussion of EOT effects in this region in
Part I). In the area south of Greenland, the SSTA is

subject to effects from a variety of parameter options,

although parameters of EOT training period, EOT

critical value, and the SSTA calculation for QC seem to

be more prominent. None of these parameter variations

substantially alter the presence of a prolonged local

temperature minimum in this region in the late twenti-

eth century.

Over the AMDR, SST is most affected by EOT

training period and EOT critical value, especially prior

to 1886. In the Kuroshio region, the situation becomes

more complex because the SST seems sensitive to all

the parameters except EOT weighting and ship–buoy

FIG. 2. As in Fig. 1, but for four key regions: (a) the Niño-3.4 region (68S–68N, 1208–1708W), (b) the region south of

Greenland (408–608N, 248–568W), (c) the AMDR (108–208N, 308–608W), and (d) the Kuroshio region south of Japan

(248–348N, 1308–1468E).
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adjustment. It is worth noting that the magnitude of SST

differences for geographical subregions (latitudinal

belts or four key regions) is often larger than in the

global mean, since local parameter effects will fre-

quently cancel when averaged over the globe.

It follows that there exists an influence of parameter

changes on the SST warming pattern and that para-

metric uncertainty is an important component of the

uncertainty to consider when using and analyzing

ERSST.v4. Figure 3 displays the global pattern of SST

trend during 1910–2012 from the ERSST.v4 operational

run for comparison purposes. A general warming dom-

inates over the globe, except for a slight but significant

cooling occurring to the north of the Ross Sea and to the

south of Greenland, two regions for deep water forma-

tion. Such warming minimum/cooling has been attrib-

uted to deep mixing and convection there, with

implications for deep ocean heat uptake (e.g., Gregory

2000; Huang et al. 2003). Figure 4 presents differences

from this field arising from the 14 SPP runs (note dif-

ferent color bar axis).

For data quality control steps, employing an SST STD

from COADS (Fig. 4a) will serve to greatly amplify the

warming in the Kuroshio and Gulf Stream regions and

moderately enhance warming in the Gulf of Alaska and

around the southern tip of Africa, while reducing the

warming in the Bering Sea and to the south of Green-

land. With an SSTA calculated on a gridbox basis

(Fig. 4b), the warming is much reduced in the Sea of

Okhotsk, the Gulf Stream area, and off Wilkes Land

of Antarctica in the Southern Ocean, but is greatly

enhanced over the Kuroshio area, the Greenland Sea,

and the South Pacific.

For bias correction steps, a switch to UKMO NMAT

causes a stronger warming to the east of Greenland, over

the Greenland Sea and the Barents Sea (Fig. 4c). Also,

the warming is somewhat strengthened in the Southern

Ocean and several marginal seas around Japan and the

Bering Strait. For the bias adjustment smoothing,

a change to smoothing parameter f 5 0.05 or f 5 0.2

(Figs. 4d,e) does not significantly modify the warming

trend over the globe; however, a switch to the linear

scheme (Fig. 4f) will increase the warming globally,

especially in the northwestern Pacific, the eastern

Greenland Sea, and thewesternBarents Sea.A ship–buoy

adjustment with 0.18C (0.148C) will uniformly but very

slightly reduce (enhance) the warming trend over the

global scale (Figs. 4g,h).

For filtering and infilling step parameter choices

(Fig. 4i), an adoption of zero LF anomaly filling is most

prominent in reducing the warming in the polar regions

(i.e., in the SouthernOcean and in theArctic). In another

aspect, the switch of EOT training period will change the

base functions in EOTs so that the SSTAs are repre-

sented differently by different sets of EOTs. Figures 4j–l

show that changes in the EOT training period and EOT

weighting function seem to add noise to the trends. The

choice of EOT critical value generally has a small effect

on warming over the globe (Figs. 4m,n).

Figure 5 illustrates the dependence of the global-

mean SST trend on parameters from the SPP runs.

From 1910 to 2012, the period of reasonable global data

coverage, the global-mean SST has a warming trend of

0.7048Ccentury21 in the operational run (Table 2). Of the

14 parameter options, 8 would increase the linear warming

trend, as shown in Fig. 4, with a greatest increase of

0.0728Ccentury21, by adopting the bias adjustment

smoothing with a linear scheme (as employed in ERSST.

v3b). The remaining 6 parameter options would decrease

the trend, with a maximal reduction by 0.0148C by a switch

to a zero LF anomaly filling method (again, as used in

ERSST.v3b).

FIG. 3. Global distribution of the SST warming trend (1910–2012) of the ERSST.v4 opera-

tional run. The trend is calculated from monthly data and only illustrated when it exceeds

a 95% significance based on a two-tailed Student’s t test.
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FIG. 4. Maps of differences of the SST warming trend (1910–2012)

between individual SPP runs and the ERSST.v4 operational run. (a)–(n)

Results from the following SPP runs: (a) STD from COADS for QC,

(b)SSTAongridboxbasis forQC, (c)UKMONMATbias adjustment, (d)bias

adjustment smoothing ( f 5 0.05), (e) bias adjustment smoothing ( f 5 0.2),

(f) bias adjustment smoothing (linear), (g) ship–buoy adjustment (0.18C),
(h) ship–buoy adjustment (0.148C), (i) LF anomaly filling (zero), ( j) EOT

training period (1982–2005), (k) EOT training period (1988–2011), (l) EOT

weighting (W5 cosu), (m) EOT critical value5 0.08, and (n) EOT critical

value5 0.12. In all plots, results are calculated frommonthly data, shown in

color, and only illustrated when they exceed a 95% significance based on

a two-tailed Student’s t test. Note that the color bar key is significantly

compressed relative to Fig. 3.
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b. Testing for nonlinearity

From the analysis in the preceding subsection,

ERSST.v4 exhibits distinct sensitivities to each of the 9

parameters and 14 alternative settings over different

regions and different time scales. The simplest way to

obtain a parametric uncertainty estimate would be to

sum all the component parameter effects from SPP runs

under the assumption that there exist only linear com-

bination effects among parameters. However, if non-

linearity exists in parameter combinations, it would

require a Monte Carlo ensemble approach (Binder and

Heerman 1992) to fully sample the parametric uncer-

tainty. Therefore, it is necessary to test for nonlinearity

among multiple parameter perturbations.

To examine the nonlinearity among parameter com-

binations, we conduct all 85 potential double-parameters

perturbation (DPP) runs, in which only 2 are perturbed

from the operational settings. Then we compare the sum

of comparable SPP and DPP results to test for non-

linearity effects.

First, we name the run with the ith parameter per-

turbed as run SPPi, then the differential SST di between

run SPPi and the operational run for an individual

monthly 28 area situated at point x in year y andmonthm

is defined as

di(x,m, y)5 SSTi(x,m, y)2 SST(x,m, y) . (1)

Similarly, the differential SST from another SPP run

(SPPj, i 6¼ j) with the jth parameter perturbed is

dj(x,m, y)5 SSTj(x,m, y)2 SST(x,m, y) . (2)

FIG. 5. Differences in global-mean linear trend estimates (with error bar) for 1910–2012

between individual SPP runs and the ERSST.v4 operational run. SPP runs are denoted in the

in-line key. The trends are calculated from monthly data.

TABLE 2. The global-mean SST linear trend estimates in ERSST.v4 operational and SPP runs. All the trends are calculated from

monthly data. Trends in SPP runs are shown in descending order of trend magnitude. The differential warming trend between each

individual SPP and the operational run is shown in the last column.

Parameter setting and changes SST trend (8C century21) DSST trend (8C century21)

ERSST.v4 operational run 0.704 —

6. Bias adjustment smoothing (linear) 0.776 0.072

3. UKMO NMAT bias adjustment 0.717 0.013

1. STD from COADS for QC 0.716 0.012

8. Ship–buoy adjustment (0.148C) 0.714 0.010

11. EOT training period (1988–2011) 0.710 0.006

5. Bias adjustment smoothing ( f 5 0.2) 0.708 0.004

14. EOT critical value 5 0.12 0.705 0.001

2. SSTA (on grid basis) for QC 0.704 0.000

4. Bias adjustment smoothing ( f 5 0.05) 0.702 20.002

13. EOT critical value 5 0.08 0.702 20.002

10. EOT training period (1982–2005) 0.697 20.007

7. Ship–buoy adjustment (0.18C) 0.694 20.010

12. EOT weighting (W 5 cosu) 0.694 20.010

9. LF anomaly filling (zero) 0.690 20.014
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Changing both in a DPP can be denoted as

dij(x,m, y)5 SSTij(x,m, y)2 SST(x,m, y) . (3)

Then the SST difference between a DPP run and its

corresponding SPP runs is

«ij(x,m, y)5 dij 2 (di 1 dj) . (4)

If the influence of changing parameters is linear, then

«ij(x,m, y)5 0. (5)

From Eq. (5), a pure linear combination requires

a zero «ij at any location and at any time. However, in

practice, the pure linear case is rare, and many cases are

quasi-linear, in which case «ij is very small but not

exactly zero. Thus, we provide a definition of small «ij for

a case to be considered approximately linear. To do that,

we start by integrating «2ij, d
2
ij, and (di 1 dj)

2 over space

(global) and over time (1875–2012):

s2
«ij 5

ððð
«2ij(x,m, y) dx dmdy ; (6)

s2
ij 5

ððð
d2ij(x,m, y) dx dmdy ; (7)

s2
i1j 5

ððð
[di(x,m, y)1 dj(x,m, y)]2 dx dmdy ; (8)

and comparing s2
«ij with s2

ij or s
2
i1j by a ratio

r2ij 5
s2
«ij

min(s2
i1j, s

2
ij)
, (9)

where min(s2
i1j, s2

ij) means the minimum between s2
ij

and s2
i1j. Using rij (here rij denotes the positive root of

r 2ij so as to represent the ratio of magnitudes), we define

that when rij # 0:1, there is an approximately linear

combination of ith and jth parameters. Thus, if the

typical perturbation caused by changing parameters

is an order of magnitude larger than the nonlinearity

difference, then the combination is said to be approxi-

mately linear.

Table 3 summarizes the nonlinearity test results in com-

binations between any two parameters in ERSST.v4.

Most combinations are nonlinear. The largest ratio rij
is equal to 0.94 in a combined perturbation between

UKMO NMAT bias adjustment and bias adjustment

smoothing with a linear scheme. The only linear combi-

nation is between parameters in the ship–buoy adjust-

ment category and parameters in theHF category: that is,

ship–buoy adjustment (0.18 or 0.148C) with EOT training

period (1982–2005 or 1988–2011), ship–buoy adjustment

(0.18 or 0.148C) with EOT weighting (W5 cosu), and
ship–buoy adjustment (0.18 or 0.148C) with EOT critical

value equal to 0.08 or 0.12.

Figure 6 shows an example of the nonlinear/linear

parameter combination in which di 1 dj, dij, and «ij are

TABLE 3. The ratio rij (see text formore details) inDPP runs. In ERSST.v4, besides the operational setting, 9 parameters (P1–P9) and 14

parameter options (index 1–14, as shown in Table 2) are considered. The nonlinearity between any two parameters is evaluated by rij with

a threshold of 0.1 [i.e., rij # 0:1 implies linearity (values in italics), while rij . 0:1 implies nonlinearity]. Note the following: (i) linearity is

evaluated between ship–buoy adjustment (P5, option 7–8) and EOTweighting (P8, option 12), albeit a rij 5 0:12 that is slightly higher than

but not significantly different from the 0.1 threshold, especially considering an obvious gap between this combination and all nonlinear

combinations. (ii) The ratio rij corresponds to a symmetric matrix, so the top right part shows the value of rij, and the bottom left part

denotes assigned linearity (L) or nonlinearity (N) in parameter combinations.

P1 P2 P3 P4 P5 P6 P7 P8 P9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.63 0.54 0.52 0.51 0.49 0.18 0.18 0.41 0.44 0.47 0.43 0.50 0.50

2 N 0.51 0.47 0.45 0.51 0.16 0.16 0.43 0.53 0.54 0.42 0.59 0.60

3 N N 0.78 0.65 0.94 0.22 0.22 0.42 0.31 0.29 0.28 0.76 0.82

4 N N N 0.27 0.26 0.37 0.25 0.26 0.25 0.34 0.37

5 N N N 0.31 0.32 0.27 0.23 0.24 0.23 0.31 0.37

6 N N N 0.24 0.25 0.33 0.29 0.29 0.26 0.40 0.39

7 N N N N N N 0.12 0.06 0.06 0.12 0.02 0.03

8 N N N N N N 0.12 0.07 0.06 0.12 0.02 0.02

9 N N N N N N L L 0.24 0.25 0.19 0.29 0.30

10 N N N N N N L L N 0.45 0.80 0.79

11 N N N N N N L L N 0.45 0.81 0.77

12 N N N N N N L L N N N 0.42 0.42

13 N N N N N N L L N N N N

14 N N N N N N L L N N N N
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mapped over the globe at an arbitrary time point (since

«ij must be around zero at any location and at any time

for a linear combination). The nonlinear case is the

combined perturbations between parameter options of

the SST STD for QC calculated from COADS and the

use of UKMO NMAT bias adjustment. As shown in

Figs. 6a and 6b, di 1 dj and dij for January 1900 have

rather different patterns in the northwestern Pacific,

especially close to the Sea of Okhotsk, so that «ij is large

and comparable with di 1 dj and dij (Fig. 6c), which

indicates significant nonlinear effects by simultaneously

altering the QC method and NMAT data for bias ad-

justment. On the other hand, with combined perturba-

tions between parameter options of ship–buoy

adjustment (0.148C) and EOT critical sampling as 0.08,

di 1 dj and dij in January 1990 share a highly similar

pattern over the globe (Figs. 6d,e) such that the differ-

ence between the two approaches is at least one order of

magnitude smaller than either delta field and negligible,

suggesting a linear combination between these two

parameter options.

Given the propensity for nonlinear interactions in

DPP experiments, it is reasonable to assume that higher-

order multiple perturbed parameter (MPP) combina-

tions will be almost ubiquitously nonlinear in nature.

Furthermore, because the effects are nonlinear, the SPP

perturbations will not be a realistic basis from which to

infer likely multiparameter combination effects. In

many cases, the effects may cancel; in others, they may

bemultiplied. This can be thought of as akin to dropping

FIG. 6. Examples of the spatial nonlinearity and linearity of parameter combinations: (a)–(c) A nonlinear example of STD calculated

fromCOADS andUKMONMATbasis for bias adjustments; (d)–(f) the linear example of ship–buoy of 0.148C andEOT critical sampling

at 0.08; (top) the sum of the SPP perturbations; (middle) the equivalent DPP estimate; and (bottom) the difference between these two

cases and for linear combinations, which is shown to be almost zero everywhere. The index of parameter (P) follows the index in Table 1,

and the index of parameter option (opt) follows the index in Table 2.
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a marble at the top of a very steep mountain, whereby

both the small stones and the large rocks may deviate its

path and affect its final resting place, and it will not

always be the largest rocks that are the greatest de-

termining factor. The only way in which to adequately

assess the uncertainty is through sampling, in some

meaningful sense, the very large perturbed parameter

solution space.

In summary, nonlinearity is extensive in parameter

combinations of ERSST.v4, necessitating aMonte Carlo

ensemble approach to fully sample the parametric un-

certainty. This is unsurprising given the sequential nature

of the processing as outlined in section 2. Indeed, based

upon a tacitly stated assumption of such nonlinearity

existing in dataset construction techniques more gen-

erally, many emergent parametric uncertainty esti-

mates for both in situ (e.g., Kennedy et al. 2011b;

Morice et al. 2012; Thorne et al. 2011a) and satellite

(Mears et al. 2011) data products have used Monte

Carlo estimation techniques to quantify their para-

metric uncertainties. To our knowledge, this is the first

time that the need or otherwise for such a step has been

formally quantified and proven, at least in an obser-

vational climate record reconstruction context for

a given algorithmic approach. However, it does not

necessarily follow that a Monte Carlo technique is

required for all such estimates.

c. Ensemble design and analysis

As justified in section 3b, a Monte Carlo ensemble

approach is employed to estimate the parametric un-

certainty in ERSST.v4. First, we assign each parame-

ter option a weighting that indicates how much chance

a given parameter value has to be selected in any given

member of the ensemble. From Table 1, the opera-

tional parameter option is assigned a larger weighting

than the others to make sure that it is the primary

parameter value choice. This is to avoid the chances of

sampling too many parameter combinations distal

from the operational choices outlined and justified in

Part I under the assumption that these operational

parameter settings are the most reasonable/optimal

settings. Parameter combinations are derived by

a random sampling that uses a uniform range distri-

bution in the selection of each parameter to obtain

100 unique sets of the 9 parameter combinations.

Finally, based on the resulting 100-parameter combi-

nation settings, we conduct 100-ensemble runs to

create 100 additional ERSST.v4 realizations, most of

which have 3–5 parameter perturbations from the

operational run.

All 100-ensemble runs share the same reference

climatological SST as in the operational run. So to

facilitate comparison of the SST evolution on

various latitudes, we calculate SSTAs from the

ensemble and operational runs relative to the

reference climatological SST during 1971–2000 and

utilize these SSTA series to study the parametric

uncertainty.

Figure 7 illustrates the global SSTA in the ensemble

and operational runs. Over the whole period, the en-

semble mean of SSTA is generally close to the value of

the operational run (Part I). Ensemble ranges are

large prior to 1900, with two spikes around World

Wars I and II (WWI and WWII), and a rapid decrease

after 1942. In general, the parametric uncertainty has

narrowed over the globe in the past century. Over

latitudinal bands, distinct characteristics are found in

parametric uncertainties. The uncertainties in the

tropics (308S–308N) are relatively low in comparison

with those in the mid and high latitudes (north of 308N
or south of 308S). The uncertainty before 1920 mainly

arises in the extratropical Northern Hemisphere

(308–908N), while after 1920, there is a more uniform

distribution over the globe due to an increase of the

quantified uncertainty in the Southern Hemisphere

(Fig. 9a, next section).

The parametric uncertainty in the Southern Ocean

(908–608S) exhibits a distinct feature. As shown in

Fig. 7g, the ensemble SSTAs in the Southern Ocean

visibly bifurcate into two groups before 1935 and

within 1955–70, so the ensemble-mean SSTA deviates

from the operational value, and the SST uncertainty

decreases instead of increasing around WWII. A

similar case also happens in the northern North

Atlantic and the Arctic (608–908N) after 2000. The

reason is that the parameter choice of an LF anomaly

filling technique overwhelms the other parameters

over the polar regions during these periods, and the

two choices have a large systematic offset from one

another (Figs. 1b,f).

We also examine the parametric uncertainty in

those four key regions considered in Fig. 2. In the

Niño-3.4 area, ensemble deviations are discernable
only prior to 1950 and mainly project onto the higher
frequencies (Figs. 8a and 10a), suggesting a prominent

parametric uncertainty over the interseasonal time scale

and a potential effect in estimation of the magnitude of-

historical ENSO events, although the timing of events

appears to be robust to these parametric uncertainty

estimates (Fig. 8a). Parametric uncertainty appears to

have a larger effect on someENSO events than on others,

with particular uncertainties in the events in the late 1940s,

around 1920, and prior to 1900 (Fig. 10a). In the area south

of Greenland, uncertainty peaks during 1900–10, with a

rapid reduction after WWII (Figs. 8b and 10a). Over

942 JOURNAL OF CL IMATE VOLUME 28



the AMDR, parametric uncertainty is large from the

early 1860s to the late 1870s, with a spike in the 1940s

(Figs. 8c and 10a). In the Kuroshio region, the un-

certainty in SST is greater than in the other three areas,

especially during the 1880s and 1890s (Fig. 10a) so that

the ensemble-mean SSTA obviously deviates from the

operational SSTA in the early stage of the time series

(Fig. 8d).

FIG. 7. Annual-mean SSTAs relative to a prior-

defined reference climatological SST (1971–2000) for

(a) globe, (b) 608S–608N, (c) 608–908N, (d) 308–608N,

(e) 308S–308N, (f) 608S–308N, and (g) 908–608S in

ERSST.v4 ensemble runs (orange), the operational run

(black), and the ensemble mean (light green).
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4. Comparisons of ERSST.v4 and HadSST3
ensemble runs

To further evaluate the parametric uncertainty esti-

mates in ERSST.v4, we next compare the ERSST.v4

ensemble runs with those fromHadSST3. The HadSST3

parametric uncertainty ensemble is only for the SST bias

adjustment components with remaining aspects derived

as additional terms outside the ensemble generation

process. Similar to ERSST.v4, a suite of 100 ensemble

realizations is implemented in HadSST3 with inde-

pendent parameters and schemes (Kennedy et al. 2011b).

These 100 realizations are generated by varying param-

eters within plausible ranges. For each realization, a new

value is taken for each parameter and drawn from a flat

prior (this is distinct from our ensemble, which pre-

ferentially picks the operational setting on average).

Parameters varied in HadSST3 include the data deck–

dependent bias adjustments, the bucket adjustments for

wooden and canvas buckets, bias from ships using engine

room intake (ERI) thermometers and hull-contact sen-

sors, ERI recorded as bucket, canvas to rubber, etc. [see

Kennedy et al. (2011b) for more details].

Unlike in ERSST.v4, realizations in HadSST3 are

expressed as deviations from the 1960–90 SST clima-

tology of the final reconstructed data, and for each

realization of the anomalies, there is a corresponding

climatological average for the period 1961–90. As a re-

sult, we cannot adopt the method in section 3(c) by

simply focusing the analysis on SSTA. Instead, para-

metric uncertainty in HadSST3 results from both SSTA

and the climatological SST.

The other major difference is that HadSST3 is not an

infilled product, nor does it undertake any form of

smoothing. As a result, there are plenty of missing grid

values in HadSST3, especially in the polar regions (908–
608S and 608–908N) and during the early period. Further,

many of the ERSST.v4 parameters varied related to the

smoothing and infilling steps (section 2, Table 1) for

which, obviously, no corollary exists in the HadSST3

ensemble. Equally, several of the HadSST3 parameters

that were varied have no corollary in the ERSST.v4

method and, hence, uncertainty estimates.

Although both products are 100-member ensembles,

these ensembles are very distinct in their construction

and their characteristics. Nevertheless it is still valuable

to compare them to understand better our uncertainty in

SSTs and the state of parametric uncertainty estimation

in SST fields and time series.

In this context, we compare here the resulting para-

metric uncertainties in ERSST.v4 and HadSST3 from

a global- and regional-mean perspective. In the com-

parison, we referred to ‘‘the ensemble median’’ of the

100 HadSST3 realizations as the ‘‘operational run’’ of

FIG. 8. As in Fig. 6, but for the four key regions (see Fig. 2).
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HadSST3 for simplicity. Within each dataset, we first

calculate a global or regional-mean SST from individual

ensemble runs, and based on that, we then calculate the

ensemble deviations. For HadSST3, considering the

characteristics of its ensemble runs, we denote its SSTA

as a and its reference climatological SST in 1961–90 as c

and format the ensemble variances (square of ensemble

deviations) of SST as

s2
(a1c) 5

1

NE

�
N

E

i51

[(ai1 ci)2 (a1 c)]2 , (10)

where ai and ci are SSTA and the reference climato-

logical SST from the ith ensemble run; a and c are the

ensemble mean of SSTA and the reference climatolog-

ical SST; and NE is the ensemble number and equal to

100. Equation (10) can be further written as

s2
(a1c) 5s2

a 1s2
c 2s2

r , (11)

where

s2
a5

1

NE

�
N

E

i51

(ai2 a)2 , (12)

s2
c 5

1

NE

�
N

E

i51

(ci 2 c)2, and (13)

s2
r 52

1

NE

�
N

E

i51

2(ai 2 a)(ci 2 c) . (14)

The terms s2
a, s

2
c , and s2

r represent the parametric un-

certainties from SSTA, the reference climatological SST,

and a residual term, respectively. For ERSST.v4, all

ensemble runs share the same reference climatology (i.e.,

ci 2 c5 0; s2
(a1c) 5s2

a) so that parametric uncertainties

can be studied from the analysis of SSTA only.

Figure 9 displays the ensemble deviations in ERSST.v4

and HadSST3 over the globe and for latitudinal bands. To

facilitate as direct as possible a comparison between

the two datasets, we collocate ERSST.v4 on the grid

of HadSST3 such that the grid sampling is the same

between ERSST.v4 and HadSST3. Since there are

substantial missing data over the polar region (outside

608S–608N), we limit the comparison to the region

608S–608N. From the figure, several differences exist

between the parametric uncertainty estimates of these

two datasets:

1) Unlike ERSST.v4, parametric uncertainty arises

roughly equally from the SSTA and the refer-

ence climatological SST for HadSST3. Averaged

over the whole period, s2
(a1c) 5 2:1543 1023 K2,

s2
a 5 1:0653 1023 K2, and s2

c 5 1:2063 1023 K2

(i.e., s2
r only accounts for 5.4% of s2

(a1c) and thus

is ignorable).

2) ERSST.v4 has a much larger parametric uncertainty

at any given time step than HadSST3, both globally

and for each latitudinal band. This is understandable,

as HadSST3 uncertainty is only from the SST bias

adjustment aspects.

3) Parametric uncertainty in ERSST.v4 is maximal in the

mid and high latitudes (outside 308S–308N), whereas
HadSST3 uncertainty maximizes in the tropical regions.

4) In most regions, ERSST.v4 has an enhanced para-

metric uncertainty around WWII, while HadSST3

has a reduced parametric uncertainty during the

same period.

In addition, we compare parametric uncertainties

in ERSST.v4 and HadSST3 within four key regions

(Fig. 10). As in the analyses for the global and latitudinal

bands, the parametric uncertainty of SST is much

smaller in HadSST3 than in ERSST.v4 over all four

areas. It is interesting to note that, over the Niño-3.4
area, the parametric uncertainty in HadSST3 does not
exhibit significant interseasonal time-scale variations, as
in ERSST.v4.
Finally, we consider the contribution of the para-

metric uncertainty to the uncertainty of long-term trends.

For ERSST.v4, we compute the trend of the global-mean

SST during 1910–2012 (the period of reasonably globally

complete coverage) from the ensemble and operational

runs in both datasets to construct a box-and-whisker

plot (Fig. 11). The warming in the ERSST.v4 opera-

tional run is 0.7048Ccentury21, which is slightly lower

than the ensemble median of 0.7118Ccentury21. Over

the 100-ensemble runs, the maximum and minimum

warming is 0.7968Ccentury21 and 0.6738Ccentury21,

while the warming trend of the 14 SPP runs is between

the maximum and minimum.

For comparison with HadSST3 we limit our calcula-

tion within 608S–608N and calculate the trend of this

regional-mean SST from HadSST3 and ERSST.v4 col-

located with the former. The comparison results show that

ERSST.v4 has a larger global-mean warming trend than

HadSST3 over this period. The warming in the ERSST.v4

operational run is 0.7208Ccentury21, which is slightly lower

than the ensemble median of 0.7348Ccentury21, whereas

the warming in the HadSST3 operational run is

0.6418Ccentury21, which is slightly higher than the en-

semble median of 0.6368Ccentury21. Unlike the large

disparity in parametric uncertainty estimates on the

monthly-to-interannual time scales (ERSST.v4 estimates

much larger than for HadSST3), the estimates are more
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comparable for these long-term large-scale diagnostics,

with HadSST3 now providing the broader range. The

interquartile range in ERSST.v4 gives a warming from

0.7188 to 0.7478Ccentury21 (0.0298Ccentury21 disper-

sion) while the range for HadSST3 gives a warming

from 0.6188 to 0.6618Ccentury21 (0.0438Ccentury21 dis-

persion). ERSST.v4 exhibits a degree of skewness in the

ensemble estimates for this global trend diagnostic that is

not apparent in HadSST3. This skewness is such that

larger values for this trend diagnostic in ERSST.v4 are

marginally more likely than smaller values.

To further test the possible extreme solutions of

global warming that could be achieved in ERSST.v4 and

whether we could better reconcile the two data prod-

ucts, we conduct two additional runs by deliberately

perturbing those five SPPs with options that can gen-

erate more/less warming than the operation run (Fig. 5

and Table 2). Results show that the estimated warm-

ing extreme is 0.7368 and 0.6698Ccentury21. The for-

mer is well within the range of ensemble estimation,

while the latter is slightly below the range of ensemble

estimation. This reaffirms the presence of significant

FIG. 9. Ensemble deviations sa, sc, and s(a1c) (see text for definition) in ERSST.v4 and HadSST3 from a global-

and regional-mean perspective. (a) Annual-mean sa, also s(a1c) in ERSST.v4; (b) annual-mean sa in HadSST3;

(c) annual-mean s(a1c) in HadSST3; and (d) seasonal sc in HadSST3. In the collocated ERSST.v4, the grid sampling

is the same betweenERSST.v4 andHadSST3 such that the uncertainties are comparable between two datasets. Since

there are substantial missing data over the polar region (outside 608S–608N), the comparison between two datasets is

then confined within the region 608S–608N.
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nonlinearity (section 3b) but also provides some degree

of confidence that the 100-member ensemble is likely

a reasonable indicator of the true range of possible so-

lutions (given, of course, the choice of parameters and

possible settings).

The trends in both ensembles are significantly non-

zero in the sense that the recognized parametric un-

certainties can rule out the presence of a zero trend in

either product. Although the two ranges marginally

overlap, this does not necessarily mean they are con-

sistent (Lanzante 2005).

This analysis of the two ensemble estimates has served

to highlight how they are clearly distinct from one an-

other. ERSST.v4 considers sources of uncertainties

that project far more strongly onto higher-frequency

components yielding broader uncertainties on high-

frequency and local scales. In contrast, all of the para-

metric uncertainty components in HadSST3 relate to

uncertainties in the bias adjustments that project mainly

onto long-term changes on broader spatial scales. It is

clear that neither estimate is ‘‘complete,’’ in the sense

that the sources of uncertainty considered are not ho-

listic in either. Therefore, these estimates need to be

assessed further in regards to which is more appropri-

ate for a given application and how they should be in-

terpreted. As noted in Kennedy et al. (2011b) and

Kennedy (2014), it is necessary to increase the number

of independent estimates and parametric uncertainty

estimates to more holistically understand historical

SSTs and their uncertainties.

FIG. 10. As in Fig. 9, but for the four key regions (see Fig. 2).
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5. Comparison to other SST estimates and
inferences

There exist several additional SST data products for

which an operational ‘‘best guess’’ product exists but

which do not produce a parametric uncertainty estimate.

Nevertheless these multiple estimates, under the as-

sumption of reasonableness, allow an assessment of:

1) whether the parametric uncertainty is likely holistic;

and 2) whether the various recognized dataset con-

struction uncertainties impact first-order conclusions

about the variations in SST. The various issues around

structural uncertainty assessments are discussed in sub-

stantially greater depth in the recent review of un-

certainties in in situ SST by Kennedy (2014) than is

possible here. For the purposes of the present analysis, it

is necessary to note that the various estimates used in

this section arise from different versions of the raw data

holdings (ICOADS and its numerous precursors) and

undertake distinct methodological choices to QC,

adjustment, and averaging.

In Fig. 12 the parametric uncertainty estimate from

section 3 is compared to the structural uncertainty ap-

parent from available estimates. Here, the structural

uncertainty is estimated as the deviation of the differ-

ence between the six available estimates under the

aforementioned assumption of reasonableness. As is

evident in Fig. 12a, the structural uncertainty is gener-

ally larger than the ERSST.v4 parametric uncertainty

estimates. The clear implication here and from section 5

is that the parametric uncertainty estimate from a single

dataset is insufficient to fully sample the structural un-

certainty inherent in the data (Thorne et al. 2011b). That

other datasets fall outside the parametric uncertainty

estimates of a single dataset is not unique to SST. For

example, Mears et al. (2011) found that for their Mi-

crowave Sounding Unit dataset parametric uncertainty

estimates, other independently derived datasets fell

outside their estimates over 50% of the time.

Neither the parametric uncertainty estimates in

ERSST.v4 (Fig. 12b) nor the structural uncertainty ap-

parent from the range of datasets (Fig. 12c) call into

fundamental question the finding that centennial time-

scale SSTs at the global-mean level have increased

substantially. It is worth noting that the three most

recently derived estimates [HadSST3, the Centen-

nial Observation-Based Estimates of SST version

2 (COBE-SST2), and ERSST.v4], which use the latest

or latest but one version of ICOADS and each apply

bias adjustments since 1941, show somewhat distinct

characteristics from the remainder (descriptions of

COBE-SST2 can be found in Hirahara et al. 2014). As

noted by Kennedy (2014), there is an acute need for

new analyses or revisiting old analyses but using the

most up-to-date data sources and knowledge and bet-

ter quantifying uncertainties inherent to each product.

This analysis and the companion piece (Part I) help

address this need.

FIG. 11. Box-and-whisker plots of the trend of mean SST (1910–2012) in ensemble and op-

erational runs from ERSST.v4 over the globe, the collocated ERSST.v4 with HadSST3 within

608S–608N, andHadSST3 within 608S–608N. The box shows the median, the lower quartile, and

the upper quartile for the ensemble members. The black crosses indicate the lower and upper

extreme of the ensemble members. The trend of operational run is denoted by a black dot. For

ERSST.v4, trends of the global-mean SST from SPP runs (cross) and two additional runs

(triangle, see text for the details of these two runs) are shown on the right on the box. All the

results are calculated from monthly data.
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6. Discussion

A parametric uncertainty estimate for ERSST.v4 is

provided in this study by performing sensitivity experi-

ments. In the low-frequency (decadal- and century-

scale), single-parameter experiments indicate that SST

is sensitive to steps associated with quality control, bias

adjustment, smoothing, and, in some regions, high-

frequency spatial field characterization using EOTs.

The EOT uncertainty dominates the high-frequency

components everywhere, projects most strongly onto

interseasonal-to-interannual variability, and is particu-

larly acute in regions of high variability, such as the

tropical Pacific Niño-3.4 region in data-sparse epochs.
Significant nonlinear effects were found to exist in

most combinations of multiple parameters, thereby

requiring a Monte Carlo ensemble approach to fully

sample the parametric uncertainty. The ERSST.v4

ensemble analysis shows that this uncertainty is largest

prior to 1900 over the globe and all regions associated

with the sparsity of data and uncertainty in the data’s

adjustment, with a further spike occurring aroundWWII,

except in the Southern Ocean. Distinct from the other

regions, SST in the Southern Ocean (also SST in 608–
908N after 2000) is subject to a large uncertainty

throughout the entire record because of the low-

frequency infilling method choices, given that there are

never sufficient observations in this region. Additionally,

parametric uncertainty is investigated in four key regions

of likely interest to end users of the dataset. In the Niño-
3.4 area, there is substantial uncertainty in early time se-
ries behavior and in some specific events in the early
twentieth century that arisesmainly fromEOT-associated
parameter choices. This uncertainty relates to the mag-
nitude rather than timing of ENSO events.
Through a comparison of the ensembles, parametric

uncertainties are found to differ significantly between

ERSST.v4 and HadSST3. In contrast to ERSST.v4,

parametric uncertainty in HadSST3 is much smaller on

monthly-to-interannual time scales over the globe. Also,

latitudinal patterns are reversed between the two data-

sets, with parametric uncertainties being maximal

over the mid and high latitudes (outside 308S–308N)

in ERSST.v4 but largely confined to the tropics

(308S–308N) in HadSST3.

The global-mean long-term trend computed from

ERSST.v4 is most sensitive to two parameters: the bias

adjustment smoothing and the low-frequency anomaly

filling. From 1910 to 2012, the warming trend increases

by 0.0728Ccentury21, when the bias adjustment

smoothing with linear scheme is used but decreases by

0.0148Ccentury21 with zero low-frequency anomaly

filling (both used in ERSST.v3b). Unlike for the high-

frequency series behavior, the parametric uncertainty

estimates in HadSST3 and ERSST.v4 are broadly com-

parable in magnitude for global-mean long-term trends.

Structural uncertainty has been assessed through

a comparison to multiple available estimates. These esti-

mates are of varying heritage and complexity and are de-

rived fromdifferent versions of historicalmarine databases.

As noted by Kennedy (2014), these issues complicate

a clean analysis of structural uncertainty. This is clearly an

evolving field where new analyses will help better inform

this aspect of the uncertainty, and we would join Kennedy

(2014) in advocating for such new analyses and reanalyses.

There are some recognized uncertainties that we have

not covered in the present analysis. These mainly re-

volve around the issues that relate to the use of a finite

set of EOTs to reconstruct spatial fields. At least three

intertwined issues pertain here. Even with spatially

complete perfect data as input, the EOT method would

FIG. 12. (a) Parametric and structural uncertainties of ERSST.v4;

(b) parametric uncertainty span (shading) and the ensemble-

mean SSTA of ERSST.v4; and (c) SSTAs of six SST products,

including ERSST.v4. All the results are globally and annually

averaged. Structural uncertainty is defined as the deviation among

six SSTAs under the assumption that each estimate is a randomdraw

from the very large number of plausible approaches to SST dataset

construction.
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yield some degree of smoothing and information loss, as

130 EOTs will only capture some percentage of the full

spatial information present. When input data are in-

complete, this information loss becomes greater, and

when they are imperfect, it becomes greater still. These

sources of uncertainty have not been explicitly

addressed here, but initial, ongoing analyses suggest that

the effects will tend to be larger at smaller scales.

Finally, for users to utilize the ERSST.v4 parametric

uncertainty estimates, the ensemble runs will be sup-

plied alongside the ERSST.v4 product. Because the

100-member ensemble is identically formatted to the

operational product, it should be simple for users to

assess the uncertainty in a meaningful manner as it

pertains to their region, time scale, and diagnostic of

interest. However, unlike the operational dataset ver-

sion described in Part I the ensemble will not be updated

every month. We would strongly encourage users to

make use of these ensembles to understand the impact

of recognized, quantified uncertainties on their own

analyses and applications of interest.

7. Conclusions

In conclusion, we have quantified herein the para-

metric uncertainty in the ERSST.v4 product, assessed

the impact upon a range of space and time scales, and

intercompared these estimates with the preexisting es-

timates from HadSST3 arising solely from SST bias

adjustment parameters. The uncertainties in ERRST.v4

are largest in data-sparse periods and regions and have

distinct impacts at different space and time scales. For

long-term global-mean trends, the parametric un-

certainties are an order of magnitude smaller than the

estimated trend, as they are for HadSST3. Furthermore,

the structural uncertainties were somewhat larger than

our parametric uncertainty estimates, and, to the extent

they can be ascertained from the handful of available

centennial-time-scale SST products, were also sub-

stantially smaller than the long-term trend. Therefore,

unless the various available means of assessing dataset

construction uncertainties are underestimated by a large

factor, it can be concluded that globally averaged SSTs

have increased since the early twentieth century, with

some uncertainty inherent in the exact magnitude. The

best estimate for the magnitude of the global-mean SST

warming since 1910, according to our ERSST.v4 prod-

uct, is around 0.78C, with asymmetry in the parametric

uncertainty such that greater values are somewhat more

likely than smaller values.
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